Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMC Med Imaging ; 21(1): 174, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528681

ABSTRACT

BACKGROUND: With the rapid spread of COVID-19 worldwide, quick screening for possible COVID-19 patients has become the focus of international researchers. Recently, many deep learning-based Computed Tomography (CT) image/X-ray image fast screening models for potential COVID-19 patients have been proposed. However, the existing models still have two main problems. First, most of the existing supervised models are based on pre-trained model parameters. The pre-training model needs to be constructed on a dataset with features similar to those in COVID-19 X-ray images, which limits the construction and use of the model. Second, the number of categories based on the X-ray dataset of COVID-19 and other pneumonia patients is usually imbalanced. In addition, the quality is difficult to distinguish, leading to non-ideal results with the existing model in the multi-class classification COVID-19 recognition task. Moreover, no researchers have proposed a COVID-19 X-ray image learning model based on unsupervised meta-learning. METHODS: This paper first constructed an unsupervised meta-learning model for fast screening of COVID-19 patients (UMLF-COVID). This model does not require a pre-trained model, which solves the limitation problem of model construction, and the proposed unsupervised meta-learning framework solves the problem of sample imbalance and sample quality. RESULTS: The UMLF-COVID model is tested on two real datasets, each of which builds a three-category and four-category model. And the experimental results show that the accuracy of the UMLF-COVID model is 3-10% higher than that of the existing models. CONCLUSION: In summary, we believe that the UMLF-COVID model is a good complement to COVID-19 X-ray fast screening models.


Subject(s)
COVID-19/diagnostic imaging , Deep Learning , Tomography, X-Ray Computed/methods , Algorithms , Datasets as Topic/statistics & numerical data , Humans , Image Processing, Computer-Assisted , SARS-CoV-2
2.
IEEE Trans Neural Netw Learn Syst ; 32(11): 4781-4792, 2021 11.
Article in English | MEDLINE | ID: covidwho-1455468

ABSTRACT

Accurate and rapid diagnosis of COVID-19 using chest X-ray (CXR) plays an important role in large-scale screening and epidemic prevention. Unfortunately, identifying COVID-19 from the CXR images is challenging as its radiographic features have a variety of complex appearances, such as widespread ground-glass opacities and diffuse reticular-nodular opacities. To solve this problem, we propose an adaptive attention network (AANet), which can adaptively extract the characteristic radiographic findings of COVID-19 from the infected regions with various scales and appearances. It contains two main components: an adaptive deformable ResNet and an attention-based encoder. First, the adaptive deformable ResNet, which adaptively adjusts the receptive fields to learn feature representations according to the shape and scale of infected regions, is designed to handle the diversity of COVID-19 radiographic features. Then, the attention-based encoder is developed to model nonlocal interactions by self-attention mechanism, which learns rich context information to detect the lesion regions with complex shapes. Extensive experiments on several public datasets show that the proposed AANet outperforms state-of-the-art methods.


Subject(s)
COVID-19/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/classification , Tomography, X-Ray Computed/standards , COVID-19/epidemiology , Databases, Factual/standards , Humans , Tomography, X-Ray Computed/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL